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COMMENT 

Comment on 'Velocity autocorrelation function in fluctuating 
hydrodynamics' 

M Howard Lee 
Depallment of Phpia and Astmnomy, The Universiry of Georgia, Athens, GA 30602, 
USA 

Received 11 August 1992 

AbstracL %kw and R a d w  recently studied the velocity autcconelation function in a 
hydrodynamic mcdel using the generalized Langnin equation formalism originally due to 
Mori and Zwamig. ne more recent recurrence relations formulation of the generalized 
Langevin equation provides a simplification. It alSo lends a penpedive an the model of 
Tsekw and R a d w  and points out the model's limitations. A reiinemcnl of the model is 
possible by consideration of the Hi lkn  space geometry as developed by the recurrence 
relations formulalion. 

Microscopic studies of hydrodynamics are of contemporary interest. In these studies 
the velocity autocorrelation function of a particle in a fluid is a focus of attention since 
it is measurable by scattering experiments [l]. Also, there exists a wealth of theoretical 
approaches to obtaining it from first principles. Recently Bekov and Radoev [2] have 
added an interesting contribution to such a study of hydrodynamics. Specifically, they 
have considered the time evolution of the fluctuating local hydrodynamic velocity 
V ( t )  via the original form of the generalized Langevin equation due to Mori [3] and 
Zwanzig [4]. (From a microscopic point of new, V may be regarded as the velocity 
of one fluid particle under observation, e.g., a Brownian particle.) The generalized 
Langevin equation is an exact microscopic equation of motion defined in terms of a 
random force, which in a fluid context may be said to arise from molecular interaction. 

In their model of hydrodynamics, Bekov and Radoev assume that the force on 
a moving fluid particle, i.e., the drag force, is linear in V - U, where U is an 
effective velocity field representing the surrounding medium. Here the first term, 
one which is linear in V, is the friction force for steady motion. The second term, 
linear in (I, presumably represents the whole of the friction force for non-steady 
motion (i.e., Boussinesq term). They interpret it as a retarded effect due to a moving 
particle, hence a field. Ib solve the generalized Langevin equation, they introduce 
an approximation of the form ( U ( t ) , U )  = ( V ( t ) , V ) ,  i.e., Cuu(t) = Cyv(t) in 
their notation. The resulting solution for the velocity autocorrelation function is of 
damped oscillation, a feature observed in numerical simulation results. 

The purpose of thib wmment is to point out that during the past decade much 
progress has been made in the generalized Langevin equation formalism, especially 
in terms of the Hilbert space by the recurrence relations method [SI. This method 
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has been applied to classical and quantum electron fluids, magnetic solids, harmonic- 
oscillator chains, etc [a). In these studies, the Hilbert space geometry has played 
a critical role in elucidating the complex physical processes. The hydrodynamic 
model of 'ISekov and Radoev can also benefit from this analysis. For example, 
the approximation introduced by Bekov and Radoev denotes a certain shape of 
the Hilbert space. There are several many-body results in which exactly the same 
shape is also realized, indicating the existence of a common dynamical mechanism. 
Furthermore, the recurrence relations analysis shows that their approximation has 
other implications, not apparent in their work. Finally, this analysis also provides a 
systematic way of obtaining a refinement of their model. 

The recurrence relations formulation is briefly summarized here in order to 
analyse the work of Bekov and Radoev. Let V(1) be the velocity of a particle 
in a fluid at time 1. The proper equation of motion for this particle is the generalized 
Langevin equation 

t .;.w + 1 +(t - t')V(t') d1' = F ( t )  dt 

where d(1) is  the memory function and F ( t )  is the random force. For simplicity, 
we have adopted p = 1, where p is the particle density. We have also suppressed 
the dependence on the wave vector k therein. Equation (1) is the starting point of 
Bekov and Radoev. The formal solution for the dynamical variable V(1) is given by 
the recurrence relations method (SI as follows: V(1) is a vector in a ddimensional 
Hilbert space S, spanned by basis vectors fu, fl, . . . fd-l, where (f,, , fn , )  = 0 if 
n' # n, 0 < n,n' < d - 1. Hence, V(1) is an orthogonal expansion 

where { a , ( t ) }  is a family of real functions. The dimensionality d is model-dependent. 
The distinguishing feature of this approach is that f,, and a,(1) each must Satisfy a 
unique recurrence relation. 

The formal solution (2) is sufficient to describe all the physical quantities of 
interest implied in (I). For example, the random force F ( t )  is an orthogonal 
expansion in a subspace SI, spanned by fl,  fi, . . . fd-l 

d - 1  

F ( t )  = fd t l  = b,(i)f, (3) 
n = l  

where { b , ( t ) }  is another family of real functions but attached to the subspace SI. 
In this subspace, the b,(t) satisfy the same recurrence relation as the u,( t ) .  The 
memory function is 

m(t)  3 +1(t) = (fl[~l>fl)/(fU%f") = Albl(t) (4) 

where 4 = (fl,fl)/(fu,fu). 
The time evolution of the random force F ( t )  f,[t] is itself also governed by 

equation (1). If V(1) is replaced by fl[t] therein, it introduces a new random force, 
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say f2[t). As in (3), then it too is an orthogonal expansion in a subspace S,, spanned 
bY fi>f,,.’.fd-l 

d-1  

f2PI = Cc,(t)f, (5)  
n=2 

where { c , ( t ) }  similarly belongs to the subspace S, and satisfies the same recurrence 
relation The corresponding memory function is 

&(*) = ( f 2 l t l ~ f z ) / ( f 1 ~ f i )  = AzcZ(t) (6) 

where A2 = ( f,, f2)/(fl ,  fl). Evidently one can continue to define ‘higher’ random 
forces indefinitely or until the smallest subspace is reached if d is finite. Now let 
d,(z) = La, ( t ) ,  etc., where L is the Laplace transform operator. Then, 

a&) = 1 /z  + A,/z  + . . . + Ad-l /z  

bl(z) = 1/z  + A2/z  + . . . t A d - , / z  

?,(z) = + A,/z + . . . + A , ~ - I / z  

(7a ) 

( 7 4  

(7c) 

where A, = (f,,, f,,)/(fn-l, fn-l), and each right-hand side in the above equations 
denotes a continued fraction. 

In the recurrence relations formulation one describes the time evolution process 
by means of an abstract space. This space is geometrically definable by the lengths 
of its basis vectors Al,A2,...Ad-l. If one chooses V(t = 0) = fu, V ( t )  
traces a trajectory in this space. If the space has infinitely many dimensions, the 
trajectory is drawn as if towards an attractor embedded in the subspace S,,,. As a 
result, the velocity autocorrelation function ( V ( t ) ,  V) may decay with or without an 
oscillation. If the space has a finite number of dimensions, there can be no decay. 
The autwrrelation function is purely oscillatory. 

The problem which ’Bekov and Radoev posed and solved can now be restated 
by the recurrence relations formulation. First, we shall identify ’ISekov and Radoev’s 
hydrodynamic quantities C,,, CFF and CUU. It is straightfonvard to recognize 
that Cvv( t ) /Cvv(0 )  = au( t )  and C F F ( t ) / C F F ( 0 )  = b, ( t ) .  But to show that 
CUU(t) /CUU(0)  = ~ ~ ( 1 ) .  it is necessary to know the second random force fz[t]. 
From (3) it is possible to write 

Comparing the above with their equations (2)-(3), we deduce that 

f2rt1 = { c F F ( 0 ) / c V V ( o ) ) L i ( ~ ) ~  (9) 

Equation (9) places the hydrodynamic model in the recurrence relations context 
The hydrodynamic model being a macroscopic model still does not contain 

sufficient information to be solved. ’ISekov and Radoev introduce an approximation: 
= &,,(z), which will be referred to as the ’Bekov and Radoev model. In 

the recurrence relations language the Tsekov and Radoev model is given by 

A,a,(z) = A222(z). (10) 
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We shall now examine the conditions under which this model can be realized. 
By (7a) and (7c) the model is allowed if and only if (i) d - m and (ii) 
A, = A, = A, = . . . u2/4. Then it follows at once that 

Hence, 

au(t) = b , ( t )  = c 2 ( t )  = . . . = 2J l (u t ) /u t  (12) 

where J ,  is the Bessel function. Equations (11) and (12) are what 'ISekov and Radoev 
have obtained for their model. 

We see that the model of Bekov and Radoev means that the Hilbert space of 
V ( t )  has an infinite number of dimensions and is hyperspherically shaped. It is 
evidently the simplest of all infinite-dimensional shapes. The same shaped Hilbert 
space is realized in several microscopic models [7]. In these models, the shapes 
of the Hilbert space are calculated ab inifio, not given as in the model of Bekov 
and Radoev. Classically, the NN coupled harmonic-oscillator chain with one impurity 
can yield such a Hilbert space. Quantum mechanically, the two-dimensional ideal 
electron gas at T = 0 can also yield the same. In these physical models an infinite- 
dimensional hyperspherical Hilbert space is obtained under only very special values of 
their parameters. It is not a general property of these models. It indicates therefore 
that the model of Bekov and Radoev is very restrictive. It may still be physically 
realizable under certain hydrodynamic constraints. 

The hydrodynamic model of Bekov and Radoev belongs to a class of Hermitian 
many-body models whose dynamics is uniquely determined by an infinite-dimensional 
hyperspherical Hilbert space. For this class of models, the memory functions are all 
the same, i.e., d , ( t )  = d 2 ( t )  = . . .. It means that the relationship between, say, 
the stochastic velocity V and its random force F E  f, is identical to the relationship 
between f, and its random force f2 and so on. Although the model of Bekov and 
Radoev does not directly assume this feature, it is nevertheless implied therein. 

Equation (9) shows that the effective velocity field U represents the second 
L*k 

linear model of a fluid, the velocity field U is what drives the random force F, which 
in turn drives V. According to the recurrence relations formulation, the velocity 
field U is itself driven by other 'higher' random forces. A macroscopic model is thus 
incompletely defined if these forces are not given a priori. By assuming a particular 
shape of the Hilbert space, Bekov and Radoev have in effect defined them, if in a 
very limited way. 

When certain simplifying approximations (e.g., RPA) are made in microscopic 
many-body models, one finds regular shapes of the Hilbert space. These shapes 
correspond to solvable zeroth-order solutions [6]. Corrections to them are obtained 
if these shapes are approximately deformed successively [8]. Thus, if it is necessary 
to refine the model of 'Eekov Radoev to be more realistic, the recurrence relations 
formulation provides a formal procedure by means of the Hilbert space geometry. 

Also, an infinite-dimensional hyperspherical Hilbert space implies a damped 
oscillation in the autocorrelation function of V(1) .  But this is not unique. There 
are other possible infinite-dimensional shapes which can also give rise to similar 
behaviour. What is more general is whether slow decay exists in the velocity 

laiidoiii iGi= i; the ;i,iiizC&tt =;t*;;;; pc;< pzre,&.s is zzcc: i; y - LT, 
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autocorrelation function. It exists in a Hermitian system if and only if the Hilbert 
space has infinite dimensions. The existence and mechanisms of slow decay are of 
current interest 191. 

Finally, one might ask what information is being lost, or made inaccessible, by 
assuming at the out?+% a regular shape of the Hilbert space as in the model of %ekov 
and Radoev. The solution of the hydrodynamical equation or its equivalent Langevin 
equation depends on the random force. The random force itself depends on the 
interaction between fluid particles, which implies a singular shape of the Hilbert 
space in one-to-one correspondence. ?b he fully developed, it is thus necessary to 
specify the nature of the random force or the interaction. The hydrodynamic problem 
of ’Isekov and Radoev, as is given, is not fully developed in this sense. Nevertheless, 
to uncover physical implications of the Tsekov and Radoev model, we shall employ 
the idea of dynamic equivalence in considering two examples, one fully developed 
and the other not. 

Density fluctuations in a ZD electron gas at low temperatures [lo] represent a 
fully developed problem since the interaction is known. Viewed at long wavelengths, 
the shape of the Hilbert space for the density fluctuations seems regular. This is the 
regime where the RPA becomes exact. What is not seen are irregular parts (‘wrinkles’) 
arising from the short-range correlation. The fine structure is apparent if viewed at 
shorter wavelengths, where the RPA breaks down. The Bekov and Radoev model is 
an RPA, containing hut gross features. 

Let the 
momentum of one end particle, say p,, he the dynamical variable of interest. If the 
chain is monatomic and the interaction is limited to NN only, the shape of the Hilbert 
space for p , ( t )  is hyperspherical, exactly as the Bekov and Radoev model. The 
hypersphere will he distorted if next NN are added. If the NN interaction is dominant, 
the distortion is slight and the dynamics of this harmonic oscillator chain are well 
described by a hyperspherical Hilbert space. Such a Hilbert space is insufficient to 
describe the dynamics fully if the more-distant-neighbour interaction is not weak, or 
if some impurities are present. What is missed is contained in the distorted part of 
the Hilbert space, which is inaccessible to the Tsekov and Radoev model. 

As a model of hydrodynamics, the Tsekov and Radoev model is thus a long- 
wavelength picture of molecular collisions. Fine details are absent, as if smoothed 
over, as a result of ‘regularizing’ the shape of the Hilbert space. The fine dynamic 
structure, which, as noted, would reflect the short-range correlation, is typically 
incoherent and dominating over a short time. Some of the more coherent and long- 
lived modes of the correlation are, however, contained in the Tsekov and Radoev 
model, as evidenced by the slow decay in the velocity autocorrelation function. Not 
fully developed, the ’I3ekov and Radoev model cannot he further delineated. 

This work is supported by the NSF, AROICRDEC, and the Office of Vice President 
for Research at the University of Georgia. The author is very grateful for their 
support. 

Next, consider a very long 1D classical harmonic-oscillator chain. 
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